Hongos lignocelulolíticos y sus enzimas: potencial biotecnológico en Cuba
Contenido principal del artículo
Resumen
La revalorización de la biomasa lignocelulósica para su uso en la producción animal, se ha estudiado como una solución ante el déficit de alimentos en este sector. Esta reseña aborda, fundamentalmente, los aspectos relacionados con los hongos lignocelulolíticos, sus enzimas y su potencial biotecnológico en Cuba. Se recopila información acerca de los avances alcanzados en los procesos de bioconversión mediante fermentación en estado sólido con cepas altamente productoras de compuestos bioactivos. Se describe la diversidad y versatilidad de las celulasas y ligninasas con la capacidad para degradar sustratos complejos y compuestos fenólicos. Lo anterior constituye un interesante reto en la actualidad, que pasa por la elucidación de los complejos mecanismos bioquímicos y fisiológicos involucrados con la degradación fúngica. El diseño de estrategias para la producción de enzimas lignocelulolíticas permitirá la mejora de la digestibilidad y la calidad nutritiva de fuentes alternativas, que de forma sostenible y ecológica puedan lograr producciones agropecuarias más eficientes.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Citas
Alberto, M., Valiño, E.C., Savón, L. & Rodríguez, B. 2024. Nuevo pretratamiento enzimático de fuentes fibrosas destinadas a especies de interés productivo. XV Congreso Científico Agropecuario Internacional FCA Promega. Panamá.
Alhomodi, A.F., Gibbons, W.R. & Karki, B.J. 2022. Estimation of cellulase production by Aureobasidium pullulans, Neurospora crassa, and Trichoderma reesei during solid and submerged state fermentation of raw and processed canola meal. Bioresource Technology Reports, 18(5): 101063, ISSN: 2589-014X. https://doi.org/10.1016/j.biteb.2022.101063.
Alhujaily, A., Mawad, A.M.M., Albasri, Ma. & Fuying, H.M. 2024. Efficiency of thermostable purified laccase isolated from Physisporinus vitreus for azo dyes decolorization. World Journal of Microbiology and Biotechnology, 40(5): 138, ISSN: 1573-0972. https://doi.org/10.1007/s11274-024-03953-9.
Asensio-Grau, A., Calvo-Lerma, J., Heredia, A. & Andrés, A. 2020. Enhancing the nutritional profile and digestibility of lentil flour by solid-state fermentation with Pleurotus ostreatus. Food and Function, 11(9): 7905-7912, ISSN: 2042-650X. https://doi.org/10.1039/d0fo01527Jj.
Beier, S., Stiegler, M., Hitzenhammer, E. & Schmoll, M. 2022. Screening for genes F in cellulase regulation by expression under the control of a novel constitutive promoter in Trichoderma reesei. Current Research in Biotechnology, 4(12): 238-246, ISSN: 2599-2628. https://doi.org/10.1016/j.crbiot.2022.04.001.
Bhandari, S., Pandey, K.R., Joshi, Y.R. & Lamichhane, S.K. 2021. An overview of multifaceted role of Trichoderma spp. for sustainable agriculture. Archives of Agriculture and Environmental Science, 6(1): 72-79, ISSN: 2456-6632. https:// doi.org/10.26832/24566632.2021.0601010.
Boondaeng, A., Keabpimai, J., Trakunjae, C., Vaithanomsat, P., Srichola, P. & Niyomvong, N. 2024. Cellulase production under solid-state fermentation by Aspergillus sp. IN5: Parameter optimization and application. Heliyon, 10(5): e26601, ISSN: 2405-8440. https://doi.org/ 10.1016/j.heliyon.2024.e26601.
Brink, D.P., Ravi, K., Lidén, G. & Gorwa, M.F. 2019. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Applied Microbiology and Biotechnology, 103(10): 3979-4002, ISSN: 1432-0614. https://doi.org/10.1007/s00253-019-09692-4.
Cebrián, M. & Ibarruri, J. 2023. Filamentous fungi processing by solid-state fermentation. Filamentous Fungi Biorefinery. In book: Current Developments in Biotechnology and Bioengineering. pp: 251-292, ISBN: 978-0-323-91872-5. https://doi.org/ 10.1016/B978-0-323-91872-5.00003-X.
Coêlho, M., Câmara J.R., Santos, F.A., Ramos, J.G., de Vasconcelos, S.M., Soares, T.C., de Melo, S.F., Machado, D.A. & Campos, L.T. 2021. Use of agroindustrial wastes for the production of cellulases by Penicillium sp. FSDE15. Journal of King Saud University - Science, 33(16): 101553, ISSN: 1018-3647. https://doi.org/10.1016/j.jksus.2021.101553.
Cruz-Davila, J., Pérez, J.V., Castillo, D.S.D. & Diez, N. 2022. Fusarium graminearum as a producer of xylanases with low cellulases when grown on wheat bran. Biotechnology Reports, 35: e00738, ISSN: 2215-017X. https://doi.org/10.1016/j.btre.2022.e00738.
Cullen, D. 1997. Recent advances on the molecular genetics of ligninolytic fungi. Journal of Biotechnology, 53(2-3): 273-289, ISSN: 1873-4863. https://doi.org/10.1016/S0168-1656(97)01684-2.
Dao, C.N., Tabil, L.G., Mupondwa, E. & Dumonceaux, T. 2023. Modeling the microbial pretreatment of camelina straw and switchgrass by Trametes versicolor and Phanerochaete chrysosporium via solid-state fermentation process: A growth kinetic sub-model in the context of biomass-based biorefineries. Frontiers in Microbiology, 14: 1130196, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2023.1130196.
de Oliveira Rodrigues, P., Gurgel, L.V.A., Pasquini, D., Badotti, F., Góes-Neto, A. & Baffi, M.A. 2020. Lignocellulose-degrading enzymes production by solid- state fermentation through fungal consortium among Ascomycetes and Basidiomycetes. Renewable Energy, 145(C): 2683-2693, ISSN: 1879-0682. https://doi.org/10.1016/j.renewe.2019.08.041.
Devi, A., Singh, A. & Kothari, R. 2024. Fungi based valorization of wheat straw and rice straw for cellulase and xylanase production. Sustainable Chemistry for the Environment, 5: 100077, ISSN: 2949-8392. https://doi.org/10.1016/j.scenv.2024.100077.
Dias, M.C., Belgacem, M.N., de Resende, J.V., Martins M.A., Damásio, R.A.P., Tonoli, G.H.D. & Ferreira, S.R. 2022. Eco-friendly laccase and cellulase enzymes pretreatment for optimized production of high content lignin- cellulose nanofibrils. International Journal of Biological Macromolecules, 209(Pt A): 413-425, ISSN: 1879-0003. https://doi.org/10.1016/j.ijbiomac.2022.04.005.
Dustet, J.C. & Izquierdo, E. 2004. Aplicación de balances de masa y energía al proceso de fermentación en estado sólido de bagazo de caña de azúcar con Aspergillus niger. Biotecnología Aplicada, 21: 85-91, ISSN: 1027-2852. https://d1wqtxts1xzle7.cloudfront.net/85907663/BA002102OL085-091-libre.pdf?1652465375.
El-Ramady, H., Abdalla, N., Fawzy Z., Badgar, K., Llanaj, X., Törős, G., Hajdú, P., Eid, Y. & Prokisch, J. 2022. Green Biotechnology of Oyster Mushroom (Pleurotus ostreatus L.): A Sustainable Strategy for Myco-Remediation and Bio-Fermentation. Sustainability, 14(6): 3667, ISSN: 2071-1050. https://doi.org/10.3390/su14063667.
Escuder, J.J., De Castro, M.E., Cerdán, M.E., Rodríguez, E., Becerra, M. & González, M. I., 2018. Cellulases from thermophiles found by metagenomics. Microorganisms, 6(3): 66-73, ISSN: 2076-2607. https://doi.org/10.3390/m0119e15.
García, Y., Ibarra, A., Valiño, E. C., Dustet, J., Oramas, A. & Albelo, N. 2002. Study of a solid fermentation system with agitation in the Biotransformation of sugarcane bagasse by the Trichoderma viride strain M5-2. Cuban Journal of Agricultural Science, 36 (3): 265-270, ISSN: 0034-7485. https://www.redalyc.org/pdf/1930/193018103011.pdf.
Hamdan, N.T. & Jasim, H.M. 2021. Cellulase from Trichoderma longibrachiatum Fungus: A Review. World Bulletin of Public Health, 4: 52-68, ISSN: 2749-3644. https://scholarexpress.net/index.php/wbph/ar-ticle/view/244.
Hernández, D.J.M., Ferrera, C.R. & Alarcón, A. 2019. Trichoderma: importancia agrícola, biotecnológica, y sistemas de fermentación para producir biomasa y enzimas de interés industrial. Chilean Journal of Agricultural & Animal Sciences, 35(1): 98-112, ISSN: 0719-3890. https://dx.doi.org/10.4067/S0719-38902019005000205.
Hu, J., Arantes, V., Pribowo, A. & Saddler, J.N. 2013. The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnology for biofuels, 6(112): 1-12, ISSN: 2731-3654. https://doi.org/10.1186/1754-6834-6-112.
Ibarra, A., García, Y., Valiño, E.C., Dustet, J., Albelo, N. & Carrasco, T. 2002. Influence of aeration on the bioconversion of sugarcane bagasse by Trichoderma viride M5-2 in a static bioreactor of solid fermentation. Cuban Journal of Agricultural Science, 36(2): 153-158, ISSN: 0034-7485. https://www.reda-lyc.org/pdf/1930/193018119012.pdf.
Iram, A., Cekmecelioglu, D. & Demirci, A. 2021. Ideal Feedstock and Fermentation Process Improvements for the Production of Lignocellulolytic Enzymes. Processes, 9(1): 38, ISSN: 2227-9717. https://doi.org/10.3390/pr9010038.
Jain, K.K., Kumar, S., Deswal, D. & Kuhad, R.C. 2017. Improved production of thermostable cellulase from Thermoascus aurantiacus RCKK by fermentation bioprocessing and its application in the hydrolysis of office waste paper, algal pulp, and biologically treated wheat straw. Applied Biochemistry and Biotechnology, 181(2): 784-800, ISSN: 1559-0291. https://doi.org/10.1007/s12010-016-2249-7.
Kameshwar, A.K. & Qin, W. 2016. Recent developments in using advanced sequencing Technologies for the genomic studies of lignin and cellulose degrading microorganisms. International Journal Biological Science, 12(2): 156-171, ISSN: 1449-2288. https://doi.org/10.7150/ijbs.13537.
Khan, N.A., Khan, M., Sufyan, A., Saeed, A., Sun, L., Wang, S., Nazar, M., Tang, Z., Liu, Y. & Tang, S. 2024. Biotechnological Processing of Sugarcane Bagasse through Solid-State Fermentation with White Rot Fungi into Nutritionally Rich and Digestible Ruminant Feed. Fermentation, 10(4): 181, ISSN: 2311-5637. https://doi.org/10.3390/fermentation10040181.
Korver, D.R. 2023. Review: Current challenges in poultry nutrition, health, and welfare. Animal, 17(2): 100755, ISSN: 1751-7311. https://doi.org/10.1016/j.ani-mal.2023.100755.
Kuhad, R.C., Deswal, D., Sharma S., Bhattacharya A., Jain, K.K., Kaur A., Pletschke B.I., Singh A. & Karp M. 2016. Revisiting cellulase production and redefining current strategies based on major challenges. Renewable and Sustainable Energy Reviews, 55(C): 249-272, ISSN: 1879-0690. https://doi.org/10.1016/j.rser.2015.10.132.
Kuhad, R.C., Gupta, R. & Singh, A. 2011. Microbial cellulases and their industrial applications. Enzyme Research, 2011(1): 280696, ISSN: 2090-0414. https://doi.org/10.4061/2011/280696.
Liguori, R., Ionata, E., Marcolongo, L., Vandenberghe, L.P., La Cara, F. & Faraco, V. 2015. Optimization of Arundo donax saccharification by (hemi) cellulolytic enzymes from Pleurotus ostreatus. BioMed Research International, 2015: 951871, ISSN: 2314-6141. https://doi.org/10.1155/2015/951871.
Liu, L., Huang, W., Liu, Y. & Meng, Li. 2021. Diversity of cellulolytic microorganisms and microbial cellulases. International Biodeterioration & Biodegradation, 163(3): 105277, ISSN: 1879-0208. https://doi.org/10.1016/j.ibiod.2021.105277.
Liu, W., Zhao, M., Li, M., Li, X., Zhang, T., Chen, X, Yan, X.Y., Bian, L.S., An, Q., Li, W. & Han, M. 2022. Laccase activities from three white-rot fungal species isolated from their native habitat in North China using solid-state fermentation with lignocellulosic biomass. BioResources, 17(1): 1533-1550, ISSN: 1930-2126. https://doi.org/10.15376/biores.17.1.1533-1550.
Lodha, A., Pawar, S. & Rathod, V. 2020. Optimised cellulase production from fungal co-culture of Trichoderma reesei NCIM 1186 and Penicillium citrinum NCIM 768 under solid-state fermentation. Journal of Environmental Chemical Engineering, 8(5): 103958, ISSN: 2213-3437. https://doi.org/10.1016/j.jece.2020.103958.
Ma, X., Li, S., Tong, X. & Liu, K. 2024. An overview on the status and future prospects in Aspergillus cellulase production. Review article. Environmental Research, 244: 117866, ISSN: 1096-0953. https://doi.org/10.1016/j.en- vres.2023.117866.
Martínez, M., Díaz, M.F., Hernández, Y., Sarmiento M., Sarduy, L. & Sierra, F. 2016. Diferentes fuentes alternativas de alimentos para aves con la intención de contribuir a la soberanía alimentaria local. Congreso Internacional Agrodesarrollo. ISSN: 978-959-7138-23-5.
Menéndez, Z., Dustet, J., Sevilla, I., Zumalacárregui, L. & Martí, M. 2015. Aplicación de crudos enzimáticos de origen fúngico en la hidrólisis del bagazo de caña de azúcar. ICIDCA sobre los derivados de la caña de azúcar, 49(3): 9-10, ISSN: 0138-6204. https://www.reda-lyc.org/articulo.oa?id=223144218002.
Mori, T., Ikeda, K., Kawagishi, H. & Hirai, H. 2021. Improvement of saccharide yield from wood by simultaneous enzymatic delignification and saccharification using a ligninolytic enzyme and cellulase. Journal of Bioscience and Bioengineering, 132(3): 213-219, ISSN: 1347-4421. https://doi.org/10.1016/j.jbiosc.2021.04.016.
Osma, J.F., Toca, J. L. & Rodríguez, S. 2014. Cost analysis in laccase production. Journal of Environmental Management, 92(11): 2907-2912, ISSN: 1095-8630. https://doi.org/10.1016/j.jenvman.2011.06.052.
Passos, D.F., Pereira Jr., N. & Castro, A.M. 2018. A comparative review of recent advances in cellulases production by Aspergillus, Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Current Opinion in Green and Sustainable Chemistry, 14: 60-66, ISSN: 2452-2236. https://doi.org/10.1016/j.cogsc.2018.06.003.
Pérez-Grisales, M.S., Castrillón-Tobón, M., Copete-Pertuz, L.S., Plácido, J. & Mora-Martínez, A.L. 2019. Biotransformation of the antibiotic agent cephadroxyl and the synthetic dye Reactive Black 5 by Leptosphaerulina sp. immobilised on Luffa (Luffa cylindrica) sponge. Biocatalysis and Agricultural Biotechnology, 18: 101051, ISSN: 1878-8181. https://doi.org/10.1016/j.bcab.2019.101051.
Pérez-Soler, H., Dustet-Mendoza, J.C. & Valiño-Cabrera, E. 2016. Incremento de la calidad nutritiva potencial de la harina de follaje de Stizolobium niveum (Mucuna) mediante fermentación en estado sólido con el hongo Trichoderma viride M5-2. Revista CENIC. Ciencias Químicas, 47: 30-33, ISSN: 0253-5688. http://www.reda-lyc.org/articulo.oa?id=181648522004.
Plouhinec, L, Neugnot, V., Lafond, M. & Berrin, J.G. 2023. Carbohydrate-active enzymes in animal feed. Biotechnology Advances, 65: 108145, ISSN: 1873-1899. https://doi.org/10.1016/j.biotechadv.2023.108145.
Quiroz, R.E. & Folch-Mallol, J.L. 2011. Plant cell wall degrading and remodeling proteins: current perspectives. Biotecnología Aplicada, 28(4): 205-215, ISSN: 1027-2852. http://scielo.sld.cu/pdf/bta/v28n4/bta01411.pdf.
Reid, I. D. 1995. Biodegradation of lignin. Canadian Journal of Botany, 73(S1): 1011-1018. ISSN: 0008-4026. https://doi.org/10.1139/b95-351.
Saidi, Al., S.M.K., Al-Kharousi, Z.S.N., Rahman, M.S., Sivakumar, N., Suleria, A.H., Ashokkumar, Husain, M. & Al-Habsi, N. 2024. Thermal and structural characteristics of date-pits as digested by Trichoderma reesei. Heliyon, 10: e28313, ISSN: 2405-8440. https://doi.org/10.1016/j.heliy-on.2024.e2831.
Sajith, S., Priji, P., Sreedevi, S. & Benjamin, S., 2016. An overview on fungal cellulases with an industrial perspective. Journal of Nutrition & Food Sciences, 6(1): 461, ISSN: 2155-9680. https://doi.org/10.4172/2155-9600.1000461.
Saldarriaga-Hernández, S., Velasco, C, Flores, P., Rostro, M., Parra, R., Iqbal, H. & Carrillo, D. 2020. Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. International Journal of Biological Macromolecules, 161: 1099-1116, ISSN: 1879-0003. https://doi.org/10.1016/j.ijbiomac.2020.06.047.
Savón, L., Valiño, E.C., Bell, R. & Hernández, Y. 2014. Dynamics of the physical properties and the fiber fractioning of the meal of dolic integral forage (Lablab purpureus), biotransformed with Trichoderma viride for feeding monogastrics. Cuban Journal of Agricultural Science, 48(2): 145-147, ISSN: 2079-3480. https://www.cjascience.com/index.php/CJAS/article/view/473.
Schneider, W.D., dos Reis, L., Camassola, M. & Dillon, A.J. 2014. Morphogenesis and production of enzymes by Penicillium echinulatum in response to different carbon sources. BioMed Research International, 214: 254863, ISSN: 2314-6141. https://doi.org/10.1155/2014/254863.
Schwab, F., Sanchez, R.M. & Vela Gurovic, M.S. 2021. Characterization of a thermotolerant species of the genus Lichtheimia isolated from fermented oil industry waste. Boletín de la Sociedad Argentina de Botánica, 56: 145, ISSN: 0373-580X. https://botanicaargen-tina.org.ar/wp-content/uploads/2021/09/Boletin-56-suple- mento_XXXVIII-Jornadas-Argentinas-de-Botanica.pdf.
Scull, I., Savón, L., Spengler, I., Herrera, M. & González, V. 2018. Potentiality of the forage meal of Stizolobium niveum and Stizolobium aterrimum as a nutraceutical for animal feeding. Cuban Journal of Agricultural Science, 52(2): 223-234, ISSN: 2079-3480. https://www.cjas-cience.com/index.php/CJAS/article/view/802.
Singh, A. & Bajar, S. 2019. Optimization of cellulolytic enzyme production by thermophilic fungus Thermoascus aurantiacus using response surface methodology. Indian Journal of Biochemistry and Biophysics (IJBB), 56(5): 399-403, ISSN: 0975-0959. https://doi.org/10.56042/ijbb.v56i5.28248.
Singh, A., Bajar, S., Devi, A. & Pantc, D. 2021. An overview on the recent developments in fungal cellulase production and their industrial applications. Bioresource Technology Reports, 14: 100652, ISSN: 2589-014x. https://doi.org/10.1016/j.biteb.2021.100652.
Sosa, A., González, N., García, Y., Marrero, Y., Valiño, E.C., Galindo, J., Sosa, D., Alberto, M., Roque, D., Albelo, N, Colomina, L. & Moreira, O. 2017. Collection of microorganisms with potential as additives for animal nutrition at the Institute of Animal Science. Cuban Journal of Agricultural Science, 51(3): 311-319, ISSN: 2079-3480. https://www.cjascience.com/index.php/CJAS/article/view/759.
Valiño, E.C., Alberto, M., Dustet, J.C. & Albelo, N. 2020. Production of lignocellulases enzymes from Trichoderma viride M5-2 in wheat bran (Triticum aestivum) and purification of their laccases. Cuban Journal of Agricultural Science, 54(1): 53-64, ISSN: 2079-3480. https://cjascience.com/index.php/CJAS/article/view/946.
Valiño, E.C., Dustet, J.C., Pérez, H., Brandão, L.R., Rosa, A.C. & Scull, I. 2016. Transformation of Stizolobium niveum with cellulolytics fungi strains as functional food. Academia Journal of Microbiology Research, 4(4): 62-71, ISSN: 2315-7771. https://doi.org/10.15413/ajmr.2015.0106.
Valiño, E., Elías, A., Carrasco, T. & Albelo, N. 2003. Effect of inoculation of the strain Trichoderma viride 137 in self-fermented sugarcane bagasse. Cuban Journal of Agricultural Science, 37(1): 43-49, ISSN: 0034-7485 https://www.reda-lyc.org/pdf/1930/193018072007.pdf.
Valiño, E.C., Elías, A., Torres, V., Carrasco, T. & Albelo, N. 2004. Improvement of the composition of sugarcane bagasse by the strain Trichoderma viride M5-2 in a solid-state fermentation bioreactor. Cuban Journal of Agricultural Science, 38(2): 145-153, ISSN: 0034-7485 https://www.redalyc.org/artic-ulo.oa?id=193017901006.
Valiño, E., Savón, L., Elías, A., Rodríguez, M. & Albelo, N. 2015. Nutritive value improvement of seasonal legumes Vigna unguiculata, Canavalia ensiformis, Stizolobium niveum, Lablab purpureus, through processing their grains with Trichoderma viride M5-2. Cuban Journal of Agricultural Science, 49(1): 81-89, ISSN: 2079-3480. https://www.cjascience.com/index.php/CJAS/article/view/552.
Vázquez, M.A., Cabrera, E.C.V., Aceves, M.A. & Mallol, J.L.F. 2019. Cellulolytic and ligninolytic potential of new strains of fungi for the conversion of fibrous substrates. Biotechnology Research and Innovation, 3(1): 177-186, ISSN: 2452-0721. https://doi.org/10.1016/j.bio- ri.2018.11.001.
Vázquez, M.A., Valiño, E.C., Torta, L, Laudicina, A., Sardina, M.T. & Mirabile, G. 2022. Potencialidades del consorcio microbiano Curvularia kusanoi -Trichoderma pleuroticola como pretratamiento biológico para la degradación de fuentes fibrosas. Revista MVZ Córdoba, 27(2): e2559, ISSN: 0122-0298. https://doi.org/10.21897/rmvz.2559.
Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P. & Narasimha, G. 2014. Fungal laccases and their applications in bioremediation. Enzyme Research, 2014: 163242, ISSN: 2090-0414. http://doi.org/10.1155/2014/163242.
Wattanakitjanukul, N., Sukkasem, C., Chiersilp, B. & Boonsawang, P. 2020. Use of Palm Empty Fruit Bunches for the Production of Ligninolytic Enzymes by Xylaria sp. in Solid State Fermentation. Waste and Biomass Valorization, 11(6): 3953-3964, ISSN: 1877-2641. https://doi.org/10.1007/s12649-019-00710-0.
Wlazlak, S., Pietrzak, E., Biesek, J. & Dunislawska, A. 2023. Modulation of the immune system of chickens a key factor in maintaining poultry production-a review. Poultry Science, 102(8): 102785, ISSN: 1525-3571. https://doi.org/10.1016/j.psj.2023.102785.
Xi, T., Liu, Z., Liu, Q. & Wang, G. 2015. Structural insight into the oxidation of sinapic acid by Cot A laccase. Journal of Structural Biology, 190(2): 155-161, ISSN: 1095-8657. https://doi.org/10.1016/j.jsb.2015.03.005.
Xie, J. & Liu, S. 2024. Kinetic understanding of fiber surface lignin effects on cellulase adsorption and hydrolysis. Results in Surfaces and Interfaces, 14: 100185, ISSN: 2666-8459. https://doi.org/10.1016/j.rsurfi.2024.100185.
Yadav, M. & Vivekanand, V. 2020. Biological treatment of lignocellulosic biomass by Curvularia lunata for biogas production. Bioresource Technology, 306(4): 123151, ISSN: 1873-2976. https://doi.org/10.1016/j.bio-rtech.2020.123151.
Zhang, Y.H. & Lynd, L.R. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7): 797-824, ISSN: 1097-0290. https://doi.org/10.1002/bit.20282.
Zhao, C., Xie, B., Zhao, R. & Fang, H. 2019. Microbial oil production by Mortierella isabellina from sodium hydroxide pretreated rice straw degraded by three-stage enzymatic hydrolysis in the context of on-site cellulase production. Renewable Energy, 130(C): 281-289, ISSN: 1879-0682. https://doi.org/10.1016/j.renene.2018.06.080.
Zwinkels, J., Wolkers, R. J. & Smid, E.J. 2023. Solid-state fungal fermentation transforms low-quality plant-based foods into products with improved protein quality LWT Food. Science and Technology, 184: 114979, ISSN: 1096-1127. https://doi.org/10.1016/j.lwt.2023.114979.